Decomposition of generalized polynomial symmetric matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Symmetric Functions and Invariants of Matrices

It is well known that over an infinite field the ring of symmetric functions in a finite number of variables is isomorphic to the one of polynomial functions on a single matrix that are invariants by the action of conjugation by general linear group. We generalize this result showing that the abelianization of the algebra of the symmetric tensors of fixed order over a free associative algebra i...

متن کامل

Reduction of the RPA eigenvalue problem and a generalized Cholesky decomposition for real-symmetric matrices

The particular symmetry of the random-phase-approximation (RPA) matrix has been utilized in the past to reduce the RPA eigenvalue problem into a symmetric-matrix problem of half the dimension. The condition of positive definiteness of at least one of the matrices A ± B has been imposed (where A and B are the submatrices of the RPA matrix) so that, e.g., its square root can be found by Cholesky ...

متن کامل

Properties of Central Symmetric X-Form Matrices

In this paper we introduce a special form of symmetric matrices that is called central symmetric $X$-form matrix and study some properties, the inverse eigenvalue problem and inverse singular value problem for these matrices.

متن کامل

Solution of the embedding problem and decomposition of symmetric matrices.

A solution of the problem of calculating cartesian coordinates from a matrix of interpoint distances (the embedding problem) is reported. An efficient and numerically stable algorithm for the transformation of distances to coordinates is then obtained. It is shown that the embedding problem is intimately related to the theory of symmetric matrices, since every symmetric matrix is related to a g...

متن کامل

Very cleanness of generalized matrices

An element $a$ in a ring $R$ is very clean in case there exists‎ ‎an idempotent $ein R$ such that $ae = ea$ and either $a‎- ‎e$ or $a‎ + ‎e$ is invertible‎. ‎An element $a$ in a ring $R$ is very $J$-clean‎ ‎provided that there exists an idempotent $ein R$ such that $ae =‎ ‎ea$ and either $a-ein J(R)$ or $a‎ + ‎ein J(R)$‎. ‎Let $R$ be a‎ ‎local ring‎, ‎and let $sin C(R)$‎. ‎We prove that $Ain K_...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2004

ISSN: 0024-3795

DOI: 10.1016/j.laa.2003.06.003